
OCERA 2nd phase Deliverables

OCERA 2nd phase Deliverables

Table of Contents
1. Metrics...1

Summary ...1
Description ..1
API / Compatibility...2
Implementation issues...4
Tests and validation ...7

Validation criteria ...7
Tests ..8

Example ...8

iii

iv

Chapter 1. Metrics

Summary

Name

Metrics (METRICS)

Description

This component is a library capable of extracting measurements of system met-
rics from POSIX trace streams.

Author/s

Agustin Espinosa, Andres Terrasa, Ana Garcia-Fornes.

Reviewer

Layer

Library level RTLinux and Linux

Version

1.0

Status

Alpha

Dependencies

Lightweight POSIX Trace

Release Date

??

Description
The POSIX tracing services specify a set of interfaces to allow for portable access to
underlying trace management services by application programs. Programmers may
use these services to get a sequence of trace events generated by the system during
the execution of their application. These trace events are kept in a POSIX trace stream.
The contents of a trace stream can be analyzed while the tracing activity takes place or
it can be analyzed later, once the tracing activity has been completed. A trace event
is generated when some action takes place in the system and this trace event may
be stored in one or several trace streams. Each trace event contains data which is
relative to the action that has generated it. The POSIX tracing services require that
data such as the following be associated to each trace event: event type, time stamp,
process identifier and thread identifier. Using these data, we can get time related
system metrics such as the execution time of a given system call, the response time
of a periodic job, etc.

Unfortunately, the interpretation of the events which are stored in trace streams may
be difficult for programmers who do not know the system implementation in detail.
Events stored in a trace stream represent system actions such as context switches,
hardware interrupts, state changes, etc. In order to extract metrics from these events
it is necessary to know how the execution of the system generates these events, and

1

Chapter 1. Metrics

normally who has implemented the system is the only one which knows this infor-
mation. In order to solve this problem, this component implements a metrics extrac-
tion engine and provides an application interface for using this engine. This interface
allows the programmer to obtain predefined system metrics from trace streams with-
out it being necessary for the programmer to know the system implementation.

API / Compatibility
The application interface for this component is as follows:

Metrics are used in this interface by means of metrics identifiers, which are objects of
the metrics_metric_id_t type. This library offers a fixed set of metrics and each
metric has its own name, "M_JOB_RESPONSE_TIME" by example. The user of this
library shall provide a predefined metric name in order to get a valid metric identifier.
These identifiers can be retrieved by using the following function:

int
metrics_metric_open (const char *metric_name,

metrics_metric_id_t *metric_id);

Metrics identifiers can be grouped in metrics sets, which are objects of the
metrics_metricset_t type. A program uses these sets in order to define the
metrics which shall be extracted from a trace stream. The following functions can be
used in order to manipulate metric sets:

int
metrics_metricset_empty (metrics_metricset_t *set);

int
metrics_metricset_fill (metrics_metricset_t *set);

int
metrics_metricset_add (metrics_metric_id_t metric_id,

metrics_metricset_t *set);

int
metrics_metricset_del (metrics_metric_id_t metric_id,

metrics_metricset_t *set);

int
metrics_metricset_ismember (metrics_metric_id_t metric_id,

const metrics_metricset_t *set,
int *ismember);

The metrics extraction engine implemented by this library shall be initialized before
it can be used to extract metrics from a trace stream. This initialization is carried out
by the following function:

int metrics_init (trace_id_t trid, const metrics_metricset_t *set);

This initialization action binds the metrics extraction engine with a trace stream and
a metric set. The trace stream identified by the trid argument will be used later by
the metrics extraction engine in order to search metrics and retrieve measurements

2

Chapter 1. Metrics

for this metrics. Both pre-recorded or a active trace stream can be binded to the met-
rics extraction engine and the identifiers for these trace stream shall be retrieved by
using the appropriate functions available in the POSIX Tracing interface. The met-
ric set identified by the set argument is used to select the metrics that the metrics
extraction engine will search in the trace stream.

Once the metrics extraction engine is initialized, measurements can be
retrieved from the trace stream. This measurements are objects of the struct
metrics_measurement_t type and can be retrieved by using the following
functions:

int
metrics_getnext_measurement (metrics_measurement_t *result,

int *unavailable);

int
metrics_trygetnext_measurement (metrics_measurement_t *result,

int *unavailable);

int
metrics_timedgetnext_measurement (metrics_measurement_t *result,

int *unavailable,
const struct timespec *abs_timeout);

typedef struct {
metrics_metric_id_t metric_id;
pthread_t thread_id;
struct timespec duration;
struct timespec begin;
struct timespec end;
int events_count;
int id;

} metrics_measurement_t;

These functions search metrics in the trace stream and, when a metric is found, a
measurement for the metric found is reported. The argument unavailable is set
to zero when no more metrics can be retrieved from the trace stream. This occurs
when all the trace events in the trace stream has been retrieved, for pre-recorded
trace streams, or when the trace stream is destroyed, for active trace streams.

The metrics_getnext_measurement function retrieves as many trace events from
the trace stream as necessary in order to find a metric and returns when a metric is
found. The calling process may be suspended if no trace events are stored in the trace
stream and this trace stream is an active trace stream. The execution of the calling
process is restarted when a new trace event is stored in the trace stream.

The metrics_trygetnext_measurement function retrieves only a trace event from
the trace stream at once in order to find a metric. If no metric is found, then an error
code is returned indicating this situation. This function is applicable to active trace
streams only.

The metrics_timedgetnext_measurement function behaves as the
metrics_getnext_measurement function, but if the calling process is suspended, it
is restarted at the time indicated in the abs_timeout argument. In this case this
function returns an error code indicating this situation. This function is applicable to
active trace streams only.

Whenever a metric is found, these functions return a measurement for this metric. A
measurement includes the following data:

3

Chapter 1. Metrics

metric_id The metric associated to this measurement

thread_id The thread associated to this measurement

duration The amount of time in which the system has been in the state
which corresponds with the metric found

begin The time stamp of the first trace event which corresponds to
the metric found

end The time stamp of the last trace event which corresponds to
the metric found

event_count The number of trace events generated by the trace system
while the system was in the state which corresponds with the
metric found

In the current stage of the Metrics library implementation, the following metrics are
currently defined:

RUNNING_SECTION

The amount of time elapsed since a thread is dispatched until another thread is
dispatched

CLOCK_NANOSLEEP_NO_SUSPENDS

Kernel execution time used to serve a clock_nanosleep function when the calling
thread is not suspended

CLOCK_NANOSLEEP_UNTIL_SUSPENDS

Kernel execution time used to serve a clock_nanosleep function until the calling
thread is suspended

CLOCK_NANOSLEEP_AFTER_SUSPENDS

Kernel execution time used to serve a clock_nanosleep function since the calling
thread is akakened until this function returns

JOB_RESPONSE_TIME_CLOCK_NANOSLEEP

Job response time for a thread which uses the clock_nanosleep to implement its
periodic behaviour

JOB_EXECUTION_TIME_CLOCK_NANOSLEEP

Job execution time for a thread which uses the clock_nanosleep to implement its
periodic behaviour

JOB_INPUT_JITTER_CLOCK_NANOSLEEP

Input jitter for a thread which uses the clock_nanosleep to implement its periodic
behaviour

JOB_OUTPUT_JITTER_CLOCK_NANOSLEEP

Output jitter for a thread which uses the clock_nanosleep to implement its
periodic behaviour

Implementation issues
Measurements are obtained by searching sequences of events stored in a trace stream
that correspond to the metrics the programmer wants to obtain. Each metric provided
by the metrics search engine is analyzed by an automaton, or, more precisely, for
a group of equivalent automata, each of which is associated to a different thread
identifier. These automata are internal to the implementation and therefore the users
of the Metrics interface don’t use them directly.

4

Chapter 1. Metrics

We decided to use automata because they adapt very well to the nature of the in-
formation to be processed, which is formed by a sequence of trace events. Another
advantage of using automata is they allow to implement new metrics in a very easy
way.

These automata are defined using the TCL scripting language. Each automaton is
defined as a TCL list, in which the automaton states and transitions are declared. An
example of this automaton definition is shown in the next code fragment.

{RUNNING_SECTION
{ ## States

Name Type

{NOT_RUNNING OUT }
{RUNNING IN }
{DONE END }

}
{ ## Transitions

From To Label

{NOT_RUNNING RUNNING {NORMAL M_CONTEXT_SWITCH SELF_THREAD }} #1
{RUNNING DONE {NORMAL M_CONTEXT_SWITCH OTHER_THREAD}} #2
{RUNNING DONE {NORMAL M_LAST_EVENT ANY_THREAD }} #3
{DONE NOT_RUNNING {LAMBDA}} #4

}
}

This automaton example implements the metric RUNNING_SECTION. This metric
represents the amount of time elapsed since a thread is dispatched until another
thread is dispatched.

This definition declares an automaton class, and this class is instantiated at run
time for any thread which is detected in the trace stream which is being scanned.
In this way, if an application has ten threads, then ten automata for the metric
RUNNING_SECTIONare generated, each one of them binded to a specific thread.

This automaton class has two main states: NOT_RUNNINGand RUNNING. The
NOT_RUNNINGstate is the initial state of the automaton and indicates that the
thread binded to the corresponding automaton instance is not running. This state
is of the type OUT, that means that the automaton is not recognizing the metric
RUNNING_SECTION.

When the system performs a context switch to the thread binded to the correspond-
ing automaton instance, then the automaton switches to the RUNNINGstate. This
state change is mandated for transition 1. This transition applies when the trace event
M_CONTEXT_SWITCHis detected in the trace stream and the system selects the thread
binded (SELF_THREAD) to the automaton instance. The RUNNINGstate is of type IN
that means that the automaton is now recognizing the metric RUNNING_SECTION.

Finally, when the automaton detects in the trace stream that the system performs a
context switch to other thread or the last event of the trace stream has been retrieved,
the automaton changes to the DONEstate, which is of the type END. This change is
mandated by transitions 2 or 3. When a state of type END is reached, the automa-
ton produces a measurement. Next, due to the lambda transition 4, the automaton
changes to the NOT_RUNNINGstate.

Automata instances have two internal modes of operation: recognizing or not recog-
nizing a metric. An automaton instance is in the not recognizing mode initially. Being

5

Chapter 1. Metrics

the automaton in the not recognizing mode, it enters in the recognizing mode when
an IN state is reached. An automaton instance switches to the not recognizing mode
again when it reaches an ENDstate, and produces a measurement with the following
data:

metric_id The metric corresponding to the automaton instance

thread_id The thread binded to the automaton instance

duration The sum of the length of the segments detected by the
automaton while it was in the recognition mode. A segment
is formed by a sequence of IN states and the length of a
segment is the difference between the time stamps of the trace
events that have determined the initial and final states of the
segment

begin The time stamp of the trace event which initiates the metric
recognition mode

end The time stamp of the trace event which makes the
automaton instance to switch to the not recognition mode

event_count The number of trace events detected while the automaton
instance was in a state of the type IN

The previous automaton class example is quite simple since a measurement is com-
prised by a single segment, and so not all the functionality of these automata is
shown. By example, when more complex metrics are defined, several segments are
part of single measurement normally. There are two more state types also, CANCEL
and CANCEL_SEGMENT. These states allow to cancel the current measurement or the
current segment respectively and they are used when the automaton detects that the
current situation detected in the trace stream doesn’t really corresponds to the metric
which is being analyzed.

Once the automata used by the metrics extraction engine have been described, let us
see how these automata are implemented.

An automaton class is represented internally as an array of state descriptors. Each
one of these state descriptor holds the type of the state and a pointer to the head
of a list of transition descriptors, which is formed by the output transitions of the
state. A transition descriptor holds its target state, its label and a pointer to the next
transition in its transition list. At compile time, a TCL script reads the definitions
of the automata classes and generates C code that declares the corresponding data
structures. An example of the generated C code is shown in the next code fragment,
which corresponds with the automaton which scans the metric RUNNING_SECTION
described above.

mtri_transition_descriptor_t tr_1 =
{1, NORMAL, M_CONTEXT_SWITCH, SELF_THREAD, NULL};

mtri_transition_descriptor_t tr_2 =
{2, NORMAL, M_CONTEXT_SWITCH, OTHER_THREAD, NULL};

mtri_transition_descriptor_t tr_3 =
{2, NORMAL, M_LAST_EVENT, ANY_THREAD, &tr_2};

mtri_transition_descriptor_t tr_4 =
{0, LAMBDA, M_ANY_EVENT, ANY_THREAD, NULL};

mtri_metric_descriptor_t mtri_metric [] =
{
{{OUT}, {IN}, {END}},
{&tr_1, &tr_3, &tr_4}
},
{

6

Chapter 1. Metrics

// Other automata
};

As you can see, automata are declared statically in the C code. This approach has the
advantage that no code is necessary at run time to initialize automata classes, making
the memory size of the library smaller.

By the other hand, automaton instances are generated using dynamic memory at run
time only when they are required. Particularly, when a new thread identifier is de-
tected in the trace stream which is being scanned, automaton instances binded to this
thread are created for all the metrics selected in the metrics engine initialization. Each
automaton instance is represented by a automaton instance descriptor. This descrip-
tor holds information about the current state of the automaton instance, a pointer to
its class automaton and accounting information related to measurement being per-
formed by the automaton instance. All of these automaton descriptors are holded in
a single linked list. When an trace event is retrieved from the trace stream, this event
is delivered sequentially to each one of the automaton instances in this list.

The temporal cost of retrieving a measurement is as follows. Processing
a single event from a single automaton instance has a cost of O(1) . The
metrics_getnext_measurement function processes as many trace event as
necessary in order to get a measurement, and each trace event is delivered to
all the automaton instances of the automaton instances list. The size of this
list is M x T, being M the number of selected metrics and T the number of
threads detected. The total cost for this function is O(E x M x T), being E
the number of trace events required to get a measurement. The cost of the
metrics_timedgetnext_measurement function is the same, since it has the same
definition. Finally, the cost of the metrics_trygetnext_measurement function is
O(M x T), since this function processes only a trace event at time.

Tests and validation

Validation criteria
The main validation criteria for this component are the following: the quality of the
interface, its correctness and its efficiency, mainly when it is used for on-line metrics
retrieval.

The quality of the interface includes aspects such as clarity, ease to use, compatibil-
ity with other interfaces and to be appropriate to implement it efficiently. A great
effort has been done in order to design a high quality interface. This effort has been
based in following the same design principles used in modern POSIX interfaces and
to develop several application programs which uses this interface in order perform
useful tasks, such as generating metrics reports or supervising the temporal behavior
of real-time applications.

Correctness is an obvious validation criteria. In order to meet this requirement
more easily, the Metrics library has been implemented as two different parts: an
automata definition system and a generic core capable to use the previously defined
automata. The advantages of this approach is that the automata definition system
and the generic core are small and simple programs, and so their correctness is easy
to validate.

By having enough conficence about the correctness of this implementation, we can
deal with the more difficult aspect of the overall correctness: to achive that a par-
ticular automaton class corresponds whith an unique path in the RT_Linux system
execution and this execution path let us to detect the metric for which the automaton

7

Chapter 1. Metrics

class is designed. This correctness can be achieved by having a precise knowledge
of the RT-Linux system and by intensive testing and examination of the trace events
stored in the generated trace streams.

Respecting efficiency, in this first stage of implementation we are trying to meet this
criteria by selecting the more appropriate data structures. The overhead of this Metric
library will be measured in the following implementation stages, and a more fine
tuning of the implementation will be done.

Tests
The Metrics library is currently in the testing phase, specially in respect to the imple-
mentation of new metrics. Test programs are always a set a real-time threads in which
the metrics which are being tested are present. Trace streams are obtained from the
execution of these programs and they are analyzed for the metrics extraction engine,
in order to test if the atomata corresponding to the metrics which are being tested are
well defined. <\para>

Example
The following code fragment shows the expected usage of the Metrics application
interface. First, a set formed by two predefined metrics is built and the metrics ex-
traction engine is initialized. Next, all the measurements are extracted from the trace
stream and processed.

metrics_metricset_empty (&set);
res = metrics_metric_open ("JOB_EXECUTION_TIME_CLOCK_NANOSLEEP",

&JOB_EXECUTION_TIME_CLOCK_NANOSLEEP);
res = metrics_metric_open ("JOB_RESPONSE_TIME_CLOCK_NANOSLEEP",

&JOB_RESPONSE_TIME_CLOCK_NANOSLEEP);

metrics_metricset_add (JOB_EXECUTION_TIME_CLOCK_NANOSLEEP, &set);
metrics_metricset_add (JOB_RESPONSE_TIME_CLOCK_NANOSLEEP, &set);

metrics_init (trid, &set);

metrics_getnext_measurement (&result, &unavailable);

while (! unavailable) {

process_measurement (&result);

metrics_getnext_measurement (&result, &unavailable);
}

}

The above code fragment can be used both for off-line and for on-line metrics re-
trieval. For off-line retrieval, the trace stream used to initialize the metrics extraction
engine should be a pre-recorded trace stream. In this case, the trace stream should
be created by using the POSIX tracing posix_trace_open function, such is shown in
the following code fragment:

8

Chapter 1. Metrics

fd = open ("trace.log", O_RDWR);
posix_trace_open (fd, &trid);

A typical usage for off-line retrieval is the generation of a data file in which all the
measurements are stored in order to generate a metrics report later. A program which
generates this data file is currently available. This program generates an XML format-
ted data file with all the measurements found. An example of a fragment of this data
file is the following:

<MEASUREMENT>
<METRIC> JOB_EXECUTION_TIME_CLOCK_NANOSLEEP </METRIC>
<THREAD> 1 </THREAD>
<DURATION> 0.003412928 </DURATION>
<BEGIN> 1.000565376 </BEGIN>
<END> 1.063999008 </END>
<EV_COUNT> 52 </EV_COUNT>
<ID > 37 </ID>

</MEASUREMENT>

When on-line retrieval is used, the trace stream should be an active trace stream, and
it should be created by using the tracing posix_trace_create function:

posix_trace_create (0, &attr, &trid);

By using the on-line metrics retrieval it is possible, for example, to implement a task
which supervises at run time that temporal requirements, such as the deadline or the
worst-case execution time, are meet for the normal application tasks.

9

Chapter 1. Metrics

10

	OCERA 2nd phase Deliverables
	Table of Contents
	Chapter 1. Metrics
	Summary
	Description
	API / Compatibility
	Implementation issues
	Tests and validation
	Validation criteria
	Tests

	Example

