A Summary of the POSIX Trace Standard

by
Andrés Terrasa, Ana Garcia-Fornes, and Agustin Espinosa
{at errasa, agar ci a, aespi nos}@isi c. upv. es

September 10, 2002

Contents
1 Introduction

2 Main Concepts
21 DataTypes o
211 TraceEvent
2.1.2 Trace Stream
2.2 Processes Involved in the Tracing Activity
2.2.1 Trace Controller Process
222 TheTracedor Target Process v v v i v i i e e
2.2.3 Trace Analyzer ProCcess v v v v v v v i e e e e e e

3 Levelsof Support

4 Review of the Trace Functions

© o ~N U~ NN

A Summary of the POSI X Trace Standard

Copyright (©2002 by Andrés Terrasa, Ana Garcia-Fornes and Agustin Espinosa
{at errasa, agar ci a, aespi nos}@isi c. upv. es

Departamento de Sistemas Informaticos y Computacion

Technical University of Valencia

Cno. de Vera s/n, 46022 Valencia (SPAIN)

This document can be freely distributed under the following terms:
e Any change or translations of this document should be previously notified to the author(s).
e Any reproduction, either complete or partial, of this document must show this copyright text.

e The authors don’t take any responsability for any damage incurred from the use of the documentation contained
herein.

Notes:

I hope the information contained in this document will be useful for those people interested in the
POSIX Trace standard.

"POSIX” and "1003.1” are registered trademarks of the Institute of Electrical and Electronic Engi-
neers, Inc.

Please report any suggestion, comment or error to my e-mail address above.

A. Terrasa

1 Introduction 3

1 Introduction

Recently, IEEE has introduced tracing to the facilities defined by the POSIX standard. The result is
called the POSIX Trace standard. According to the Webster’s Revised Unabridged Dictionary, one of
the definitions of trace is:

“to follow by some mark that has been left by a person or thing which has preceded; to
follow by footsteps, tracks, or tokens”.

Adapting this definition to the context of a computer program, tracing can be defined as the
combination of two activities: the generation of tracing information by a running process, and the
collection of this information in order to be analyzed. Thus, the usual purpose of tracing is to find
out the sequence of significant steps taken by a running program (or by the operating system in the
program’s behalf), in order to test, debug, tune, etc., this program. Of course, the definition of these
steps and the information to be generated in each of them entirely depends on both the program
characteristics and the specific purpose of the analysis to be carried out.

The POSIX Trace standard tries to standardize the way applications use tracing. In particular, it
has two main objectives. Using its own words, the first objective is “to specify a set of interfaces to
allow portable access to underlying trace management services by application programs™; and the
second one is ““to supplement the application portability interfaces to promote the “portability”” to
users and programmers between conforming systems”. These two objectives basically mean that a
POSIX-conforming operating system should provide the application programs with an appropriate set
of portable facilities for tracing. The facilities should be as general as possible in order to permit the
tracing of programs of any kind and to perform different types of tracing (on-line or off-line, partial
or exhaustive, etc.).

The POSIX Trace standard was initially approved in Sep. 200 by the IEEE-SA Standards Board
as the amendment named “POSIX 1003.1q (tracing)“. However, in Dec. 2001, IEEE finally approved
the “1003.17™ |EEE Standard for Information Technology—Portable Operating System Interface
(POSIX®)” (IEEE Std. 1003.1-2001), a single document which superseded the two previous POSIX
standards (approved in 1992 and 1996, respectively) and all the later amendments, including the
tracing amendment®. The Trace standard is currently an option in POSIX, meaning that conforming
system may freely support it or not.

The rest of this document is organized in the following way: Section 2 introduces the standard
main concepts, including the main data types and facilities that the standard introduces to support
tracing. Section 3 explains the different levels of support that the standard defines. These levels
can individually be adopted by conforming systems as implementation options. Finally, Section 4
reviews the set of interface functions defined by the Trace standard, including a brief description and
the information that in which level(s) of support they have to be included.

1The IEEE Std. 1003.1-2001 standard has also been approved by the Open Group under the name of “the Single
UNIX® Specification (version 3)”. Both the IEEE and the Open Group have the copyright of this standard.

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

4 The POSIX Trace Standard

2 Main Concepts

The POSIX Trace standard is founded on two main data types (trace event and trace stream) and is also
based on three different roles which are played during the tracing activity: the trace controller process
(the process who sets the tracing system up), the traced or target process (the process which is actually
being traced), and the trace analyzer process (the process who retrieves the tracing information in
order to analyze it). All these concepts are detailed in the following sections.

2.1 DataTypes
211 TraceEvent

When a program needs to be traced, it has to generate some information each time it reaches a “sig-
nificant step” (certain instruction in the program’s source code). In the POSIX Trace standard termi-
nology, this step is called a trace point, and the tracing information which is generated at that point
is called a trace event. A program containing one or more of this trace points is named instrumented
application.

A trace event can be thus defined as a data object representing an action which is executed by
either a running process or by the operating system. In this sense, there are two classes of trace
events: user trace events, which are explicitly generated by an instrumented application, and system
trace events, which are generated by the operating system?.

Any trace event, being either system or user, belongs to a certain trace event type (an internal
identifier, of type t r ace_event i d_t) and it is associated with a trace event name (a human-readable
string). For system events, the definition of event types and the mapping between these types and their
corresponding names is hard-coded in the implementation of the trace system. Therefore, this event
types are common for all the instrumented applications and never change (they are always traced).
The trace standard predefines some event types, which are related to the trace system itself, and
permits the operating system designer to add some others which may be interesting to that system. The
definition of user event types is very different. When an instrumented application wants to generate
trace event of a particular type, it has first to create this type. This is done by invoking a particular
function (posi x_t race_open()) that, given a new trace event name, returns a new trace event type;
then, events of this type can be generated from that moment on. If the event name was already
registered for that application, then the previously associated identifier is returned. The mapping
between user event types and their names is private to each instrumented program and lasts while the
program is running.

The generation of a trace event is done internally by the trace system for a system event and
explicitly (by the application when invoking posi x t r ace_event ()) for a user trace event. In both

2gystem trace events can be related to an action executed by the operating system in the process’ behalf (such as a system
call being invoked) or due to an internal action not related to any particular process (e.g., a hardware timer expiration).

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

2.1 Data Types 5

cases, the standard defines that the trace system has to store some information for each trace event
being generated, including, at least, the following:

a) the trace event type identifier,
b) atimestamp,
c) the process identifier of the traced process (if the event is process-dependent),

d) the thread identifier (of the thread related to the event), if the event is process-dependent and
the O.S. supports threads,

e) the program address at which the event was generated,

f) any extra data that the system or the instrumented application wants to associate with the event,
along with the data size®.

2.1.2 Trace Stream

When the system or an application trace an event, all the information related to it has to be stored
somewhere before it can be retrieved, in order to be analyzed. This place is a trace stream. Formally
speaking, a trace stream is defined as a non-persistent, internal (opaque) data object containing a
sequence of trace events plus some internal information to interpret those trace events. The standard
does not define a stream as a persisten object and thus it is assumed to be volatile, that is, to reside in
main memory.

The standard establishes that, before any event can be stored for a process, a trace stream has to
be explicitly created to trace that particular process (the process’ pid is one of the arguments of the
stream creation function). In the most general case, the relationship between streams and processes
is many to many. On the one hand, many processes can be traced in a single stream; in particular, this
happens if the target process forks after a stream has been created for the (parent) process. On the
other hand, the standard permits that many streams are created to trace the same process; if so, each
event generated by the process (or by the operating system) is registered in all these streams.

Streams also support filtering. The application can define and apply a filter to a trace stream.
Basically, the filter establishes which event types the stream is accepting (and hence storing) and
which are not. Therefore, trace events corresponding to types which are filtered out from a certain
stream will not be stored in the stream. Each stream in the system(even if associated with the same
process) can potentially be applied a different filter. This filter can be applied, removed or changed at
any time.

The standard defines two classes of trace streams: active and pre-recorded, which are described
below.

3The standard sets that the maximum size of extra information that an application can associate with a trace event is
configurable by the application, according to its needs. If the size of the data given with a certain trace event exceeds this
upper limit, then the trace system can truncate this data.

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

The POSIX Trace Standard

a) Activetrace stream. This is a stream that has been created for tracing events and has not yet
been shut down. This means that it is now accepting events to store. An active trace stream can
be of two different types, depending on whether it has been created with or without a log.

In a trace stream with log, the stream is created along with a log. A log is a persistent object
(that is, a file) in which the events stored in the stream are saved each time the stream is flushed
by the trace system. The trace controller process can create such a stream by calling the function
posi x_trace_createwi thl og(). Thus, events traced from the target process are stored
in the stream until it is flushed, either automatically by the trace system or when the trace
controller process invokes the posi x t race fl ush() function. In either case, the flushing
then frees the resources previously occupied by the events just written to the log, making these
resources available for new events to be stored. This is shown in Figure 2-(a). In streams with
a log, events are never directly retrieved from the stream but from the log (see “Pre-recorded
trace stream” below), once the stream has been shut down. That is, the log is not available for
retrieving the events until the tracing of events is over.

In a trace stream without log (created by calling posi x t race creat e()), trace events are
never written to any persistent media, but instead they remain in the stream (in memory) until
they are explicitly retrieved. Thus, the stream is accessed concurrently for storing (target pro-
cess) and retrieving (trace analyzer process) events. These accesses can be done only while the
stream is active (that is, before it is shut down) since, after that, all the stream resources are
freed. Therefore, an active trace stream without a log is used for on-line analysis of events, as
shown in Figure 1.

Trace Controller
Process

Y)ntrol
Trace Analyzer

i Process
Trace Stream ¢ rg‘,g'n%e
Dﬁm >
trace
events events

Target or Traced
Process

Figure1l: On-line tracing of events in an active stream without log.

The standard establishes that the trace analyzer process retrieves the events one by one, with
the trace system always reporting the oldest stored event first. When this oldest event has
been reported, the resources that it was using in the stream have to be freed and then become

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

2.2 Processes Involved in the Tracing Activity

b)

available for new events to be traced.

If the rate at which events are being traced is higher than the rate at which the trace analyzer
process is retrieving them from the stream, then the stream may become full. If an active stream
without log becomes full, it may either stop accepting events or loop; this depends on the so-
called stream full policy, which is one of its attributes. In the former case, the stream will start
accepting events again when a certain amount of events in the stream have been retrieved, hence
freeing resources for the new ones to be stored. In the latter (loop) case, when the stream is
full, the oldest recorded events in the stream are lost as new events are stored (that is, the oldest
events are overwritten).

Pre-recorded trace stream. A stream of this class is used for retrieving trace events which
were previously stored in a log. In particular, the log file is opened into a (pre-recorded) stream
from which events are then retrieved. Thus, off-line analysis of events is performed in two
steps: first, events are traced into an active stream with log; second, after this stream is shut
down, the log can be opened into a pre-recorded stream from which the events are retrieved.
This process is shown in Figure 2.

Trace Controller

Process u
<

control "“II”IIH

A
Trace Stream
events

Target or Traced
Process

Trace Analyzer
Process

(b)

Figure 2: Off-line tracing: (a) Tracing of events in an active stream with log. (b) Retrieval of events
from a pre-recorded stream.

2.2

Processes I nvolved in the Tracing Activity

The standard defines that up to three different roles can be played in each tracing activity: trace
controller process, traced (or target) process and trace analyzer process. In the most general case,
each of these roles is executed by a separate process. However, nothing in the standard prevents from
having two (or even the three) of these roles executed by the same process. In a small, multi-threaded

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

The POSIX Trace Standard

application, we can have, for example, the three roles played by different threads inside the same
process. These roles are now explained in detail.

2.2.1 TraceController Process

The trace controller process is the process that sets the tracing system up in order to trace a (target)
process, which can be the same process or a different one. In particular, this process is in charge of,
at least, the following actions:

a)

b)

d)

Creating a trace stream with its particular attributes (e.g, if the stream is with or without a log,
the stream full policy, etc.). This is further detailed below.

Starting and stopping tracing when necessary. This is done by calling posi x trace start ()
and posi x_trace_st op(), respectively. Each active stream can be in two different states:
running or suspended. These two states determine whether or not the stream is accepting events
to be stored. The trace controller process can start and stop the stream as many times as it wants.
If the stream full policy is to trace until full (POSI X _ TRACE_UNTI L _FULL), the trace system will
automatically stop the stream when full and start it again when some (or all) of its stored events
have been retrieved.

Filtering the types of events to be traced. Each stream is initially created with an empty filter
(that is, without filtering any event type). If this is not the required behavior, the trace controller
process can build a set of event types (t race_event set _t), include the appropriate event
types in it, and apply it as a filter to the stream (by invoking posi x trace set filter()).
After that, the stream will reject any event whose type is in the filter set.

Shutting the stream down, when the tracing is over (posi x trace shut down()). The stan-
dard requires that shutting a stream down must free all the stream resources. That is, the stream
is destroyed and no more operations can be done on it.

Among all these basic actions, the creation of the stream is the most complex one. This action is
done in two steps:

1.

Create a stream attribute object (t race_attr t) and set each of its attributes appropriately.
Since this type is also opaque to the user(that is, internal to the trace system), the standard
provides a function to initialize an attribute object and then pairs of functions to get and set
each of the individual attributes included in the object. Some of these attributes are: the stream
name, the stream minimum size, the event data maximum size, the stream full policy, etc. This
setting up is performed before invoking the call to create the stream.

. Create the stream (t r ace.i d_t). There are two different functions to create an active stream,

depending on whether it has to be with or without a log. Respectively, these functions are

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

2.2 Processes Involved in the Tracing Activity 9

posi x_trace_createw thl og() and posi x_trace_create(). In either case, the argu-
ments of the creation function are the stream attribute object, previously initialized and set (see
above), and the target process’ pid (process identifier).

The main implication of this is that the target process has to exist before the trace controller
process can create a stream to trace it. Besides, it has to have “enough privileges” over the
target to do it. The exact definition of this latter requirement depends on the implementation of
the trace system.

The stream identifier returned in this function can only be used by the process that has created
the stream. Only this process can thus directly access the stream in any way. This establishes
some limitations that will be commented in Section 2.2.3 below.

Optionally, the trace controller process can also perform other actions on the stream, once the
stream has been created:

e Clearing the stream (posi x_t race_cl ear ()). This clears all the events that are now in the
stream, but leaves its behavior (attributes) intact. Clearing the stream makes it exactly in the
same state that it was just after being created.

e Flushing the stream (posi x_trace_fl ush()). If the stream is created with a log, this ac-
tion produces an automatic flushing of all the events which are now in the stream to the log.
Otherwise, an error is returned.

e Querying the stream attributes (posi x_trace_get _attr()) and the stream current status
(posi x_trace_get status()). The stream status includes whether the stream is currently
running or suspended, whether or not an overrun has occurred, etc.

e Retrieving the list of event types defined for the stream. The list is retrieved in order, since the
function posi x_t race_event t ypel i st _get next _i d() returns the first event type when it
is invoked for the first time, and the next event type in subsequent calls. At any time, the re-
trieval of event types can be initialized by calling posi x_t race_event t ypel i st rew nd().
Actually, the standard establishes that the event types are not actually associated with a partic-
ular stream, but to a particular target process. In other words, the list of event types is the same
for all the streams which are tracing the same target.

e Mapping event names to event types (posi x_trace.trid_eventid_open()). This is nor-
mally performed by the target process in order to create its own user event types. However, the
trace controller process can use the mapping function in the opposite way: given a well-known
user trace event name, the mapping function will return the event type identifier; then, the trace
controller process can use that identifier to set up a stream filter, for example.

2.2.2 TheTraced or Target Process

The traced or target process is the process that is being traced, that is, is the process for which a trace
stream has been created and set up.

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

10 The POSIX Trace Standard

According to the standard, only two functions can actually be called from a target process:

a) A function to register a new user event type for this process (posi x t race eventi d open()).
The input argument of this function is the (new) event type name. If this name has already being
registered for that target, then the previously mapped event type identifier is returned. If not,
then a new identifier is internally associated with this name and returned. If an implementation-
defined maximum amount of user event types had already been registered for that target pro-
cess, then a predefined event type called POSI X_TRACE_UNNAMED_USEREVENT is returned. If
successful, this registration is valid for all the streams that have been created, or will be created,
to trace the target process (even if no stream has still been created for that target).

From the user viewpoint, therefore, the identification of user event types is done in a per-name
basis (instead of using integer values, for example). This allows for a name space wide enough
to avoid collisions when independent pieces of instrumented code are linked together into a
single application. This include, for example, the case of linking an instrumented third-party
library to our code, even when we do not have the library’s source code.

b) A function to trace an event (posi x_trace_event ()). This function has three input argu-
ments: the event type, which must have been previously registered (see above), a pointer to any
extra data that has to be stored along with the event, and the size of this data®. The event is
stored in all the streams created for that particular target which are currently running and which
do not have the event’s type being filtered out.

It is important to point out that neither of these functions accepts a stream identifier as a parameter.
That is, according to the standard philosophy, the target is programmed to invoke these functions
without being aware (and independently) of actually being traced or not. The result is that calling the
posi x_trace_event () function has no effect if no stream has been created for the target. In other
words, an instrumented running program does not actually become a target process until at least one
stream has been created for it. The case of the posi x t race _eventi d_.open() function is different
since, as explained above, the trace system will register any new event type for the program even
when no stream has been created for tracing the process.

This philosophy completely decouples the target from the trace controller process, with many
interesting advantages. For example, imagine an application that runs for long periods of time without
stop (a real-time application or a database, for instance). It may be interesting to know, every once
in a while, how this application is performing. Therefore, this (instrumented) application can be
the target of an inspector (trace controller) program that, periodically, creates one or more streams
to trace it, gets the resulting events, and then destroys the stream(s). Depending on the application
characteristics, this occasional tracing may be good enough to check how the application is behaving,
and does not overload the system with a continuous tracing.

*Internally, the trace system will store all this information along with some mandatory internal data defined by the
standard (see Section 2.1.1). All this data will be reported when the event is retrieved by the trace analyzer process.

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

2.2 Processes Involved in the Tracing Activity 11

2.2.3 Trace Analyzer Process

This process is in charge of retrieving the stored events in order to analyze them. The standard defines
three alternative retrieval functions to be used by the trace analyzer process:

a) posi x_trace_get next _event (). This function retrieves one event from the stream whose
identifier is provided as a parameter. If no event is immediately available, the function blocks
the invoking process (or thread) until an event is available.

b) posi x_trace_ti medget next event (). This function works in a similar fashion than the
previous one, but, when no event is immediately available, it blocks the process until either
an event is available or an absolute timeout is reached (whatever of both happens first). If the
timeout is produced first, the invoking process gets the corresponding error code.

C) posi x_trace_tryget next _event (). This function never blocks the invoking process: it
either return a retrieved event or an error code, if no event is available at the moment.

If successful, any of these functions retrieve the oldest event stored in the stream which has
not still been reported. The age of each event is calculated according to the automatic timestamp
performed by the trace system when the event is recorded.

As explained above, the events can be only be retrieved from two different places: (1) from an
active stream without log; (2) from the log of a (previously destroyed) stream with log, once this log
has been opened into a (pre-recorded) trace stream. This defines the two kinds of analysis that the
standard supports:

a) On-lineanalysis. In this kind of analysis, the trace analyzer process retrieves the events from
an active trace stream (without log). As stated above, the retrieval function (any of them) needs
to provide the stream’s identifier; however, according to the standard, this identifier can only
be used within the process that created the stream. This forces that, in an on-line analysis, the
trace analyzer process and the trace controller process have to be the same one.

b) Off-lineanalysis. As explained in Section 2.1.2, this analysis is done in two steps: in the first
step, events are recorded into an active trace stream with log that, automatically or under request
of the trace controller process, flushes these events to the log (file). Once this step is over, the
trace analyzer process opens the log into a private, pre-recorded stream (posi x t r ace open()),
from which it can start retrieving the events. Only the first of the three retrieval functions men-
tioned above can actually be used in a pre-recorded stream. Obviously, in this case, this function
will never make the trace analyzer process to block, since all the events are already stored in
the stream.

From a pre-recorded stream, events are always reported in order (according to the recording
timestamp) but they are not erased from the stream after being retrieved. If necessary, the trace
analyzer process can start retrieving the events again from the oldest one by rewinding the
stream (posi x-t race_r ewi nd()), without having to re-open the log.

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

12 The POSIX Trace Standard

In addition, the trace analyzer process can also retrieve other information of the stream (either
active or pre-recorded), including the list of registered event types and its names, the stream attribute
object (and then each of its individual attributes), the stream current status (for an active stream), etc.
All this information is intended to make the trace analyzer process able to correctly interpret the trace
events which it is retrieving.

3 Levesof Support

The POSIX Trace standard splits the tracing support to be provided by the operating system in four
different subsets or levels of support (hamed implementation options). Each of these levels can be
optionally implemented by the system depending on the particular trace functionality that the system
wants to support. Normally, each implementation option makes the trace system to support a certain
subset of the tracing data types, constants, functions, etc.; occasionally, it also changes the semantics
of some other functions supported by other options. Overall, this follows a general philosophy that
POSIX has adopted in many system facilities, allowing for the implementation a great variety of
conforming operating systems with very different levels of support.

In particular, the standard establishes four different implementation options, which are now dis-
cussed:

a) Trace option. This option correspond to the most basic level of trace support. It is not really
optional, since any conforming system must provide, at least, all the system facilities included
in this option. In particular, this option requires only tracing into streams without a log with no
filtering of events, and it only permits one process to be traced per trace stream. In other words,
this option only supports on-line tracing of single target processes without event filtering.

b) Trace Log option. This option adds the possibility of creating trace streams with log to the
Trace option, hence allowing for off-line analysis.

¢) Tracelnheritance option. This option adds the possibility of tracing multiple target processes
in one stream to the Trace option. Having that this option is supported, the tracing of multiple
target processes in the same stream can only occur in one scenario: if a target process forks into
one or more child processes and the stream on which the (parent) target process is being traced
was created with an specific inheritance attribute set. If so, all these processes will concurrently
being traced in the same stream. Otherwise, children of a target process are not traced.

d) Trace Event Filter option. This option adds the possibility of filtering events to the Trace
option. As explained above, the trace controller process can apply a set of event types as a filter
on a particular stream, making any event whose type is in the set to be discarded (of that stream)
when traced. Filtering of events is specially useful in on-line analysis, in order to permit the
trace analyzer process to retrieve all the important events without loss. In general, filtering of
not relevant events is always a good idea in order to prevent the tracing system to process an
overwhelming number of events.

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

4 Review of the Trace Functions 13

4 Review of the Trace Functions

This section briefly reviews the trace functions defined in the standard. In the following tables (Table 1
to 3), each function is cited along with the implementation options on which it is defined, the process
or processes which may use it, and a brief description. In these tables, the following terminology has
been used:

e In the column headers, L, I, and F stand for the three additional implementation options that
can be supported, that is, Trace Log, Trace Inheritance and Trace Event Filter options. For
each trace function (in rows), a tick (/) in one of these three columns means that the function
belongs to this option (or, in other words, that the function has only to be provided if the tracing
system wants to support that option).

e A plus sign (+) may optionally be placed instead of a tick (/) to associate a function with an
implementation option (see above). This means that the function actually belongs to another
option, but supporting this option makes the semantics of the function to change. For example,
the function posi x trace_attr setstreanful | policy() establishes the full policy in a
stream attribute object. If only the Trace option is provided, this attribute can be set to one of
two alternative values: POSI X_.TRACE_LOOP and POSI X_TRACE_UNTI L_FULL. However, if the
Trace Log option is also supported, then this attribute can also be set to a third alternative value
(POSI X_.TRACE_FLUSH).

e Inside tables, TC stands for Trace Controller Process, TP stands for Traced (or Target) Process,
and TA stands for Trace Analyzer Process.

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

14

The POSIX Trace Standard

Function

F

Processes

Description

posi

posi

xtraceattr_init

Xx_trace.attr _destroy

TC

TC

Initializes a trace stream attribute
object.

Destroys the trace stream attribute
object.

posi

posi

posi

posi

posi

Xx_trace.attr _getenversion

Xx_trace_attr_get nane

Xx_trace_attr_set nane

x_trace.attr_getcreatetine

x_trace.attr _getcl ockres

TC, TA

TC, TA

TC

TC, TA

TC, TA

Gets the generation version of an at-
tribute object (origin and version of
the trace system).

Gets the name of an attribute object
(the name of the trace stream).

Sets the name of an attribute object
(the name of the trace stream).

Gets the creation time of the trace
stream.

Gets the resolution of the times-
tamping clock.

posi

posi

posi

posi

posi

posi

x_trace.attr_getinherited

Xx_traceattr _setinherited

x_traceaattr_getstreanfullpolicy

Xx_traceattr _setstreanfullpolicy

x_traceaattr_getlogfullpolicy

x_traceattr_setlogfullpolicy

TC, TA

TC

TC, TA

TC

TC, TA

TC

Gets the inheritance policy of the
trace stream (trace also children of
the target process or not).

Sets the inheritance policy of the
trace stream (trace also children of
the target process or not).

Gets the trace stream full policy
(loop, until full or flush). This latter
only if Trace Log supported.

Sets the trace stream full policy
(loop, until full or flush). This latter
only if Trace Log supported.

Gets the trace log full policy (loop,
until full or append).

Sets the trace log full policy (loop,
until full or append).

posi

posi

posi

posi

posi

posi

posi

posi

X_trace_attr_get maxusereventsi ze

x_trace_attr_get maxsyst eneventsi ze

X_trace_attr _get maxdat asi ze

x_trace_attr _set maxdat asi ze

X_trace.attr _getstreansi ze

X_trace.attr _setstreansi ze

x_traceattr _getl ogsize

Xx_traceattr _setl ogsize

TC, TA

TC, TA

TC, TA

TC

TC, TA

TC

TC, TA

TC

Gets the maximum amount of mem-
ory to store a single user trace event.

Gets the maximum amount of mem-
ory to store a single system trace
event.

Gets the maximum size allowed of
the data attached to a single trace
event.

Sets the maximum size allowed of
the data attached to a single trace
event.

Gets the minimum size of the trace
stream used to store trace events.

Sets the minimum size of the trace
stream used to store trace events.

Gets the minimum size of the trace
log used to store trace events.

Sets the minimum size of the trace
log used to store trace events.

Table 1: Trace functions defined in the POSIX Trace standard (i).

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

4 Review of the Trace Functions

15

Function | F | Processes | Description

posi x_tracecreate TC Creates trace stream, using a
stream attribute object.

posi x_trace_createw t hl og TC Creates trace stream with a log, us-
ing a stream attribute object.

posi x_-trace_fl ush TC Flushes the stream into its log.

posi x_t race_shut down TC Stops the tracing in the stream and
shuts the stream down.

posi x_trace_cl ear TC Reinitializes the stream, deleting
all the events currently stored (if
any). The stream status remains un-
changed, as well as the mappings
between trace event types and their
names.

posi x_trace_tri d_eventid.open + Y TC Returns the event type correspond-
ing to an event name event type in
a given stream. The mappings actu-
ally belong to the target process (or
processes, if the Trace Inheritance
option is supported).

posi x_-trace_eventi d_get _nane TC, TA Gets the event name mapped with
an event type in a given stream.

posi x_trace_eventi d_equal TC, TA Compares two event types.

posi x_trace_eventypel i st _getnext i d TC, TA Gets the first/next event type defined
for a given stream.

posi x_trace_eventypel i st rew nd TC, TA Rewinds the list of type events de-
fined for a given stream.

posi x_trace_event set enpty v TC Returns an empty set of event types.

posi x_trace_eventset fill v TC Returns a set of event types which
is full with all the event types, all the
user event types or all the system
event types.

posi x_trace_event set _.add v TC Adds an event type to a set.

posi x-trace_event set _del Vv TC Deletes an event type from a set.

posi x_trace_event set i snenber v TC Tests whether an event type is a
member of an event set.

posi x_trace_get filter v TC Retrieves the current filter from a
given stream.

posi x_traceset filter v TC Applies a filter to a given trace
stream by using an event set.

posi x_trace.start TC Makes a given stream to start trac-
ing.

posi x_trace_st op TC Stops a given trace stream.

posi x_trace_eventi d_open TP Associates a trace event name with
a trace event type.

posi x_trace_event TP Traces an event into all the streams

created for the target on which the
type of the event is not being filtered
out.

Table 2: Trace functions defined in the POSIX Trace standard (ii).

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

The POSIX Trace Standard

Function L | F | Processes | Description

posi x_trace_open TA Opens a log into a (pre-recorded)

stream.
posi x_trace.r ewi nds TA Rewinds a (pre-recorded) stream.

posi x_tracecl ose TA Closes a (pre-recorded) stream.

L L

posi x_trace_get _attr TC, TA Gets the attribute object from a given
active stream. (This can also be
a pre-recorded stream, if the Trace

Log option is supported).

posi x_trace_get _st at us + TC, TA Gets the current status of a given ac-
tive stream. (This can also be a pre-
recorded stream, if the Trace Log op-
tion is supported).

posi x_trace_get next _.event + TA Returns the oldest (non-retrieved)
trace event from an active stream
or blocks until such event is avail-
able. (The stream can also be a pre-
recorded stream, if the Trace Log op-
tion is supported).

posi x_trace._ti nedget next _event TA Returns the oldest (non-retrieved)
trace event from an active stream or
blocks until either such event is avail-
able or a timeout is produced.

posi x_trace_tryget next _event TA Returns the oldest (non-retrieved)
trace event from an active stream
or a significative value, but it never
blocks.

Table 3: Trace functions defined in the POSIX Trace standard (jii).

©2002 A. Terrasa, A. Garcia-Fornes, A. Espinosa

